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Overview

* News stream clustering

Compare
e dense vectors
e sparse vectors
e combinations

e State-of-the-art results
e B-cubed F1 for evaluation

Integrated into a real system
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Related Work

* newslLens [Laban & Hearst, 2017]
* build clusters and storylines for news
* used: keywords, graph, community detection
® we use vectors instead
* We are inspired by their pipeline

*[Miranda et al., 2018]

* clustered a stream of news articles in English, Spanish and German

* TF-IDF, timestamp

» we use a local graph instead

* We use their dataset



NewslLens Clustering Example
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Our Model

1. identify local topics
* sliding window over time with overlaps
* using article vectors: TF-IDF, doc2vec, combination

* graph edge if Sim(di,dj) > T
* Louvain’s community detection

2. merge long-term topics
* using the mean of all news vectors belonging to the topic

* mergetopicsif
* also, use machine Szm(?ia tj) Z_TQ and T2



Representation

TF-IDF
Doc2Vec
® trained on Signal Media One-million news articles corpus:
® 265,512 blog articles
® 734,488 news articles

® from 93k unique sources

over a period of one month



Combined Representations

Combination (unsupervised)

® usingTland T2

Combination (supervised)

® |ogistic regression with TF-IDF and doc2vec scores as input

« and whether a pair of articles are in the same cluster in the training data



Merging Long-Term Topics: Louvain’s Community Detection

Topic 1

Protesters in England call for change to cricket governance

=

Topic 2
Gujarat quota protests turn violent



Merging Long-Term Topics: Louvain’s Community Detection

Topic 1

Protesters in England call for change to cricket governance

Community detection correctly assigns the two
topics to different communities

Topic 2

Gujarat quota protests turn violent



Dataset

Partition| Docs Tokens Clusters Cluster Size
Train 12,233 434+364 593 21+32
Test 8,726 521495 222 39188

Train

 December 18, 2013 to February 2, 2014
* No time gaps

Test:
 November 2, 2014 to August 25, 2015

» Gaps as long as 3 months --> need to find long-term topics
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Evaluation: BCubed measures

Favor clusterings that

* split a cluster that mixes two categories into two pure clusters
(cluster homogeneity)

* unify two clusters that contain only items from the same category
(cluster completeness)

*add an item of a different category to an already noisy cluster
instead of a pure one

* make small errors in a big cluster rather than a large number of small
errors in small clusters
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Evaluation Results

BCubed

model F4 P R F1 P R clusters
baselines

newsLens [LH17] 89.76 94.37 85.58 95.09 95.90 94.30 873

Miranda et al. [MZCB18] 92.36 94.57 90.25 94.03 98.14 90.25 326
unsupervised

TF-IDF 94.41 95.16 93.66 98.11 97.60 98.63 484

doc2vec 89.96 93.00 87.12 95.44 95.55 95.34 785

TF-IDF & doc2vec 92.97 95.75 90.34 97.61 97.73 97.48 663
supervised (LR)

TF-IDF 94.30 94.87 93.73 98.08 97.46 98.71 485

TEF-IDF & doc2vec 93.67 92.71 94.65 97.15 95.39 98.98 431

Expected: 222 clusters
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Discussion:
Impact of Louvain’s Community Detection

BCubed
F4 P R Fq P R clusters

before 91.55 93.76 89.44 94.36 95.55 93.20 488
after 94.41 95.16 93.66 98.11 97.60 98.63 434
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DBSCAN vs. Our Model: Miranda&al.-2018 corpus
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Our Clustering Algorithm (w/ TF-IDF) Powers
Tanbih: https://www.tanbih.org/

POLITICAL
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Julian Assange should be extradited to Australia, father says
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https://www.tanbih.org/

Tutorial 2 / 6 : Read articles in a story

PR PSS P YT T ——

BUSINESS SPORTS POLITICS ARTS & ENT TECH & SCI

CULTURAL-IDENTITY : POLITICAL

Propaganda? LI

- Propaganda? GIIEN

Joao Felix transfer: Man Utd and Chelsea 'to Venezuelan FM Warns Foreign Journalists
rival Liverpool for £60m wonderkid' Against Working Without Accreditation
L4 » 10f6 SPORT FOOTBALL TRANSFER NEWS < > T1of3 LATAM
4 hours ago 4 hours ago

Each story on TANBIH will have multiple articles from multiple news outlets. If you are interested in a story, you can go through all articles of a story from these previous and next buttons



Conclusion and Future Work

Summary
e Compared dense vs. sparce vectors
* State-of-the-art results
* B-cubed F1 for evaluation
* Integrated into a real system
Future work

- Improve topic matching
- Cross-language extension

http:

www.tanbih.or
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